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Abstract

The equations of nonlinear, time-dependent radiative transfer are known to yield the equilibrium diffusion equation

as the leading-order solution of an asymptotic analysis when the mean-free path and mean-free time of a photon become

small. We apply this same analysis to the Fleck–Cummings, Carter–Forest, and N�kaoua Monte Carlo approximations

for grey (frequency-independent) radiative transfer. Although Monte Carlo simulation usually does not require the

discretizations found in deterministic transport techniques, Monte Carlo methods for radiative transfer require a time

discretization due to the nonlinearities of the problem. If an asymptotic analysis of the equations used by a particular

Monte Carlo method yields an accurate time-discretized version of the equilibrium diffusion equation, the method should

generate accurate solutions if a time discretization is chosen that resolves temperature changes, even if the time steps are

much larger than the mean-free time of a photon. This analysis is of interest because in many radiative transfer problems,

it is a practical necessity to use time steps that are large compared to a mean-free time. Our asymptotic analysis shows

that: (i) the N�kaoua method has the equilibrium diffusion limit, (ii) the Carter–Forest method has the equilibrium

diffusion limit if the material temperature change during a time step is small, and (iii) the Fleck–Cummings method does

not have the equilibrium diffusion limit. We include numerical results that verify our theoretical predictions.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Asymptotic analysis has been shown to be a powerful technique for analyzing discrete-ordinates spatial-

differencing methods for linear transport problems in optically thick, diffusive media [1]. In this technique,
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asymptotic solutions to the discrete equations are generated as the mean-free path becomes small, the

spatial grid is fixed, and the spatial cells become optically thick. The analytic transport equation yields the

diffusion equation in this asymptotic limit [2–4], and it is desirable for the discretized transport equation to
yield a discretized version of the correct limiting diffusion equation. If the leading-order discrete asymptotic

solution yields a valid discretization of the diffusion equation, the transport discretization method is said to

have the diffusion limit. Discrete-ordinate methods that have this limit yield accurate results for diffusive

problems, even if the spatial cells are not optically thin. If the discrete method does not have the diffusion

limit, an optically thin spatial grid must be employed to achieve an accurate solution, even if the solution

varies slowly with respect to the spatial variable [5,6].

A similar asymptotic limit exists for the nonlinear, time-dependent thermal radiative transfer equations,

yielding the equilibrium diffusion equation [7]. In this limit, both the mean-free path and mean-free time of a
photon become small. Several discrete-ordinate methods for radiative transfer have been analyzed as-

ymptotically using this approach [8,9].

Monte Carlo methods are also used to solve thermal radiative transfer problems [10–12]. Unlike linear

transport problems, in which Monte Carlo solutions can be generated virtually free of truncation error,

Monte Carlo methods for radiative transfer are ‘‘linearized’’ over each time step. This linearization is re-

quired to treat the nonlinear dependence of material properties on the temperature. Especially troublesome

is the fact that the material itself is a nonlinear source of photons, due to Planckian emission [13]. For

stability reasons, the processes of photon absorption, increase or decrease in material temperature, and
photon emission within the time step are usually treated in an implicit or semi-implicit manner. In fact, the

distinction between the different Monte Carlo methods is their implicit approximation to the absorption–

reemission process. However, even when an ‘‘implicit’’ approximation to the emission source is used, un-

physical solutions may be generated if large time steps are employed [14–16].

In this paper, we perform an asymptotic equilibrium diffusion limit analysis of three Monte Carlo

methods for thermal radiative transfer: the Fleck–Cummings method [10], the Carter–Forest method [11],

and the N�kaoua method [12]. If this analysis yields, to leading order, a valid discretization of the equi-

librium diffusion equation, we say that the method has the equilibrium diffusion limit. In this limit, the mean-
free path and mean-free time of a photon become small, the time discretization is fixed, and the time steps

become optically large (i.e., large compared to a mean-free time). This analysis is of interest in problems

that approach the equilibrium diffusion limit, where it is often too computationally expensive to employ

time steps that are small with respect to the mean-free time. We propose that if a Monte Carlo method has

the equilibrium diffusion limit, accurate results will be obtained for problems with diffusive characteristics,

even if large time steps with respect to the mean-free time are used. (However, the time-step size must be

adequate to resolve the diffusion solution. Accurate results will not be achieved if the time step is too large.)

If a method does not have the equilibrium diffusion limit, to obtain an accurate solution, optically small
time steps must be employed.

There are a few caveats regarding the scope of this paper. First, we consider radiative transfer in the

grey (frequency-independent) case only. Although Monte Carlo simulation does not require a multigroup

discretization of the frequency variable, the linearization process used by the Monte Carlo method in-

troduces errors into the frequency spectrum of the solution because the spectrum of a Planckian emission

source is a function of the material temperature, which is usually held constant during the time step in a

Monte Carlo simulation. This constant-temperature approximation may yield incorrect results in the

equilibrium diffusion limit. Secondly, although Monte Carlo simulations have statistical errors, our
analysis treats only ‘‘ideal’’ solutions to the underlying linearized equations that are free from statistical

error. Finally, in most Monte Carlo implementations, the physical system is subdivided into a spatial

grid, with material properties and temperature constant within each spatial cell. For simplicity, we treat

the material temperature as a continuous function in space. The focus of this paper is the analysis of

errors introduced in Monte Carlo simulations of grey radiative transfer problems by various time-
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discretization schemes; we do not consider spatial truncation errors here, but we discuss this issue more

thoroughly in our conclusions section.

We begin the remainder of this paper with a description of the equations of radiative transfer and the
corresponding equilibrium diffusion equation. Then, we briefly overview the Monte Carlo methods of in-

terest and present the results of an asymptotic analysis for each of these methods. This analysis generates a

time-differenced equation for each Monte Carlo method, which we compare to a time discretization of the

equilibrium diffusion equation. Finally, we present and discuss numerical results for relevant problems with

diffusive properties.
2. Analytical equations

In the absence of internal sources and scattering, the grey radiative transfer equations are [13]

1

c
oI
ot

þ ~X � ~rI ¼ r
1

4p
acT 4

�
� I
�

ð1Þ

and

oUm

ot
¼ r

Z
I dX

�
� acT 4

�
: ð2Þ

Here ~r is the spatial variable, ~X is the angular variable, t is the time variable, Ið~r; ~X; tÞ is the radiation

intensity, T ð~r; tÞ is the material temperature, rð~r; T Þ is the opacity, a is the radiation constant, and c is the

speed of light. We assume local thermodynamic equilibrium, in which the emission source is a Planckian at

the local material temperature:

1

4p
racT 4: ð3Þ

The material temperature T and the material energy density, Umð~r; tÞ are related by

oUm

oT
¼ Cv > 0; ð4Þ

where Cvð~r; T Þ is the heat capacity. Thus, the material energy density is an explicit function of temperature,

Um½T ð~r; tÞ�. The left-hand side of Eq. (2) can then be written in terms of temperature,

oUm

ot
¼ Cv

oT
ot

: ð5Þ

An equilibrium solution exists for Eqs. (1) and (2), in which the radiation intensity is a Planckian at the

material temperature:

I ¼ 1

4p
acT 4: ð6Þ

To complete the problem description, we impose initial conditions for I and T at t ¼ 0,

Ið~r; ~X; 0Þ ¼ I ð~r; ~XÞ; ð7Þ
i
T ð~r; 0Þ ¼ T ð~rÞ; ð8Þ
i



178 J.D. Densmore, E.W. Larsen / Journal of Computational Physics 199 (2004) 175–204
and a boundary condition that specifies I on the outer boundary of the system for incoming directions.

Since the focus of this paper is on time discretization schemes, we do not consider boundary conditions

explicitly.
We consider the following scaling of Eqs. (1) and (2):

�2
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where � � 1. Larsen et al. [7] give a physical justification for this scaling. However, we note that it can be

achieved by allowing (i) the opacity to become large (r ! r=�), (ii) the heat capacity to become small

(Cv ! �Cv), and (iii) the speed of light on the left-hand side of Eq. (1) to become large (c ! c=�). Physically,
this represents a system in which the mean-free path is Oð�Þ when compared to the length scale over which I
and T vary by Oð1Þ, the mean-free time is Oð�2Þ when compared to the time scale over which I and T vary

by Oð1Þ, and Oð�Þ amounts of radiation energy absorbed and emitted by the material correspond to Oð1Þ
changes in the material temperature. For consistency, we have also scaled the material energy density in Eq.

(10) (i.e. Um ! �Um). This scaling, as � ! 0, is known as the equilibrium diffusion limit.

Eqs. (9) and (10) are the starting point for an asymptotic analysis. Larsen et al. [7] have shown that,

away from boundaries and initial times, as � ! 0, the leading-order intensity is a Planckian at the local

temperature,

I ð0Þ ¼ 1

4p
acðT ð0ÞÞ4; ð11Þ

and the leading-order temperature satisfies the following nonlinear diffusion equation:

o

ot
UmðT ð0ÞÞ þ a

o

ot
ðT ð0ÞÞ4 ¼ ~r � ac

3r
~rðT ð0ÞÞ4: ð12Þ

If we define the radiation flux as

~F ¼
Z

~XI dX; ð13Þ

then the rate of spatial flow of radiation energy is �~r �~F . From Eq. (11), there is no leading-order flux, but
the Oð�Þ flux is given by Fick�s law [7]:

~F ð1Þ ¼ � ac
3r

~rðT ð0ÞÞ4: ð14Þ

Eq. (12) is then a statement of conservation of energy: the left-hand side is the time rate of change in the

material and radiation energy, and the right-hand side represents the spatial flow of radiation energy.

Pomraning [17] has performed an initial-layer analysis to determine an initial condition for Eq. (12). This

initial condition requires T ð0Þð~r; 0Þ to satisfy the nonlinear equation

Um T ð0Þð~r; 0Þ
h i

þ a T ð0Þð~r; 0Þ
h i4

¼ Um½Tið~rÞ� þ
1

c

Z
Iið~r; ~XÞdX: ð15Þ

Eq. (15) combines the initial material and radiation energy densities such that material and radiation are

locally in equilibrium at T ð0Þð~r; 0Þ.
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3. Overview of Monte Carlo methods

To develop a Monte Carlo method for radiative transfer, we must first ‘‘linearize’’ Eqs. (1) and (2). We
begin by defining a fixed temporal grid 0 ¼ t0 < t1 < t2 < � � �. Within each time step tn 6 t6 tnþ1, a time-

dependent Monte Carlo simulation is performed of a linearized problem, with initial conditions generated

by the previous time step, or by the initial conditions, Eqs. (7) and (8), if n ¼ 0. The Monte Carlo-calculated

radiation intensity can then be used to update the material energy density, and in turn the material tem-

perature. In most Monte Carlo methods the material energy density and temperature are calculated as an

average over a spatial cell, with temperature-dependent quantities being considered constant within each

spatial cell and calculated with the appropriate cell-averaged temperature. We do not explicitly show this

spatial discretization in the following paragraphs, except where necessary for clarity.
We begin linearizing Eqs. (1) and (2) by approximating the opacity as constant within each time step,

rðT Þ � rn; ð16Þ

where rn can be defined at the temperature at the end of the previous time step, or at some extrapolated

temperature within the current time step. In addition, we define the equilibrium radiation energy density

as

Ur ¼ aT 4: ð17Þ

Eqs. (1) and (2) can then be written for tn 6 t6 tnþ1 as
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The following Monte Carlo methods differ in their approximation to Ur within the time step.

3.1. The Fleck–Cummings method

To derive the Fleck–Cummings method [10], we rewrite the left-hand side of Eq. (19) as

oUm

ot
¼ oUm

oT
oT
oUr

oUr

ot
¼ 1

b
oUr

ot
; ð20Þ

where, employing Eqs. (4) and (17),

b ¼ oT
oUm

oUr

oT
¼ 4aT 3

Cv

: ð21Þ

Approximating b by its beginning of time-step value,

bðT Þ � bðTnÞ ¼ bn; ð22Þ

where Tn is the temperature calculated at the end of the previous time step, we may write Eq. (19) as

1

b
oUr

ot
¼ rn

Z
I dX

�
� cUr

�
: ð23Þ
n
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Integrating Eq. (23) over the time step, we obtain

Ur;nþ1 ¼ aT 4
n þ rnbn

Z tnþ1

tn

Z
I dX

�
� cUr

�
dt; ð24Þ

where the subscript n denotes the value at time tn, as in Eq. (22). In Eq. (24) Ur;nþ1 is an approximation to Ur

at the end of the current time step (Ur;nþ1 6¼ aT 4
nþ1). We now approximate the step-averaged value of Ur by

interpolating between the beginning and end of time-step values,

1

Dtn

Z tnþ1

tn

Ur dt ¼ ~Ur ¼ aUr;nþ1 þ ð1� aÞaT 4
n ; ð25Þ

where Dtn ¼ tnþ1 � tn, and a is a parameter chosen by the user, usually taken between 1/2 and 1. Eqs. (24)

and (25) yield

Ur;nþ1 ¼ fn ½1
�

� ð1� aÞbncrnDtn�aT 4
n þ bnrn

Z tnþ1
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Z
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�
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where the Fleck factor fn is defined as

fn ¼
1

1þ abncrnDtn
: ð27Þ

Eqs. (25) and (26) then yield the average value of Ur over the time step:

~Ur ¼ fnaT 4
n þ abnrnfn

Z tnþ1

tn

Z
I dXdt: ð28Þ

The following time-dependent approximation for Ur within the timestep is consistent with Eq. (28):

Ur � fnaT 4
n þ abnrnDtnfn

Z
I dX: ð29Þ

Substituting Eq. (29) into Eq. (18), we obtain the Fleck–Cummings transport equation

1

c
oI
ot

þ ~X � ~rI þ rnI ¼
1

4p
rnð1� fnÞ

Z
Ið~r; ~X0; tÞdX0 þ 1

4p
rnfnacT 4

n : ð30Þ

This is a standard linear transport equation, which can be solved for tn 6 t6 tnþ1 using a Monte Carlo

simulation. To approximate the absorption–reemission process, Eq. (30) includes an artificial scattering

term (representing photons absorbed and reemitted within the time step),

1

4p
rnð1� fnÞ

Z
Ið~r; ~X0; tÞdX0; ð31Þ

and a source term (representing photons absorbed in previous time steps and reemitted during the current

time step),

1

4p
rnfnacT 4

n : ð32Þ

To update the material energy density (and temperature), we approximate Ur in Eq. (19) by Eq. (29).
Integrating Eq. (19) over the time step, we obtain
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UmðTnþ1Þ ¼ UmðTnÞ þ rnfn

Z tnþ1

tn

Z
I dXdt � rnfnDtnacT 4

n : ð33Þ

Once UmðTnþ1Þ has been calculated, the end of time-step temperature Tnþ1 is calculated using the nonlinear
equation

UmðTnþ1Þ � UmðTnÞ ¼
Z Tnþ1

Tn

CvðT ÞdT ; ð34Þ

which is obtained from Eq. (4).
3.2. The Carter–Forest method

To derive the Carter–Forest method [11], Eq. (19) is approximated by Eq. (23), just as in the derivation

of the Fleck–Cummings method. The starting point for the Carter–Forest method is then Eqs. (18) and

(23):
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However, instead of approximating an average value of Ur, one solves Eq. (36) exactly, yielding
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Using Eqs. (37) and (35), the Carter–Forest transport equation then becomes
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Eq. (38) represents the absorption–reemission process by including a time-dependent ‘‘reemission’’ term

(representing photons that are absorbed and reemitted during the time step),
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Z
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and a time-dependent ‘‘source’’ term (representing photons absorbed in previous time steps and emitted
during the current step),

1

4p
rnacT 4

n e
�crnbnðt�tnÞ: ð40Þ

Eq. (39) represents a process in which photons are absorbed, then reemitted at a later time isotropically.

The probability distribution function for the reemission time is

crnbn e
�crnbnðt�t0Þ; ð41Þ
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where t0 is the absorption time and t is the reemission time. In standard implementations of the Carter–

Forest method, particles that would be reemitted past the end of the time step are considered absorbed and

added to the material energy (this energy is then emitted exponentially in the following time step).
To update the material energy density, Eq. (37) is substituted into the right-hand side of Eq. (19), and the

resultant equation is integrated over the time step. This yields

UmðTnþ1Þ ¼ UmðTnÞ þ
Z tnþ1

tn

Z
rn e

�crnbnðtnþ1�tÞIð~r; ~X; tÞdXdt � aT 4
n

bn
1
�

� e�crnbnDtn
�
: ð42Þ

As with the Fleck–Cummings method, Eq. (34) is solved for the end of time-step temperature once UmðTnþ1Þ
is determined. The only approximations in the Carter–Forest method are that the nonlinear terms r and b
are held constant within a time step (and that, in practice, a spatial grid is used to represent the material

temperature and any temperature-dependent material properties).
3.3. The N’kaoua method

Instead of using Eq. (19) to develop an approximation for Ur, the N�kaoua method approximates Ur in

Eqs. (18) and (19) by its end of time-step value [12]. The starting point for this method is

1
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4p
rnacT 4
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and

oUm

ot
¼ rn

Z
I dX� rnacT 4

nþ1: ð44Þ

The key to the N�kaoua method is noting that Eq. (43) can be solved for I (as a function of Tnþ1) without

knowing Tnþ1. The Monte Carlo simulation is accomplished by treating the weights of the particles as

unknowns. This technique is similar to one proposed by Brooks [18] for line transport (i.e., local ther-

modynamic equilibrium is not assumed). After I is calculated, Eq. (44) can be solved for Tnþ1.

We briefly overview the implementation of the N�kaoua method. To begin, we subdivide the transport

problem into several problems. The first problem is given by

1

c
oI0
ot

þ ~X � ~rI0 þ rnI0 ¼ 0; ð45Þ

with initial condition

I0ð~r; ~X; tnÞ ¼ Ið~r; ~X; tnÞ; ð46Þ

which is known from the results of the previous time step. Eq. (45) should also account for any external

radiation sources. This transport problem represents particles with known weights. Then, for each spatial

cell j, we define the problem

1

c
oIj
ot

þ ~X � ~rIj þ rnIj ¼
1

4p
rncvj; ð47Þ
Ijð~r; ~X; tnÞ ¼ 0; ð48Þ

where vj is unity in cell j, and vanishes in all other cells. In Eq. (47), Ur has been set to unity within the cell of

interest. This transport problem accounts for particles emitted by each spatial cell during the current step.
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After I0 and Ij for each cell are determined, the results are used to evaluate the integral on the right-hand side

of Eq. (44), and the resulting equation is integrated over the timestep (and the jth spatial cell). This yields

UmðTnþ1;jÞ ¼ UmðTn;jÞ þ
1

Vj

Z tnþ1

tn

Z Z
j
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3rdXdt

þ
X
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j
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3rdXdt
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aT 4
nþ1;k � rn;jDtnacT 4

nþ1;j; ð49Þ

where Vj is the volume of cell j, rn;j is the opacity of cell j, and Tnþ1;j is the temperature at the end of the time

step in cell j. Eq. (49), along with Eq. (34), for all cells j, constitutes a system of nonlinear equations that is

solved for Tnþ1;j.

The N�kaoua method differs from the other Monte Carlo methods in that, from Eq. (49), it is truly

nonlinear. No linearization process, as used in the Fleck–Cummings and Carter–Forest methods, is em-

ployed in the derivation of the N�kaoua method (i.e., b ¼ 4aT 3=Cv is not held constant during the time
step). However, the opacity is held constant over a time step, as in the other Monte Carlo methods, so the

N�kaoua method does have a linearization error in problems with temperature-dependent opacities. Also,

the N�kaoua method approximates the emission source implicitly, which yields a truncation error.
4. Asymptotic analysis

We now present an asymptotic analysis for each of the above methods within a time step. This analysis
generates a difference equation for Tn that is a (hopefully valid) time-discretized version of the equilibrium

diffusion equation, Eq. (12). The asymptotic analysis also generates expressions similar to Eqs. (11) and

(15).

We begin by applying the approximations discussed in the previous section to Eqs. (9) and (10). Then,

away from the beginning of the time step, we express the radiation intensity and temperature as interior

solutions,

I ¼ I ðiÞð~r; ~X; tÞ ð50Þ

and

T ¼ T ðiÞð~r; tÞ: ð51Þ

Near the beginning of the time step, the radiation intensity and temperature are given by initial-layer
solutions,

I ¼ I ðilÞð~r; ~X; t; sÞ ð52Þ

and

T ¼ T ðilÞð~r; t; sÞ; ð53Þ

where we have defined the ‘‘fast’’ time variable as

s ¼ t � tn
�2

: ð54Þ

In this analysis, t and s are considered independent variables, and we treat the temperature as a con-

tinuous function of~r.
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The initial-layer solutions are subject to initial conditions,

I ðilÞð~r; ~X; tn; 0Þ ¼ Ið~r; ~X; tnÞ ð55Þ

and

T ðilÞð~r; tn; 0Þ ¼ T ð~r; tnÞ; ð56Þ

where Ið~r; ~X; tnÞ and T ð~r; tnÞ are provided by the results of the previous time step. The following matching

conditions link the initial-layer and interior solutions:

lim
s!1

I ðilÞð~r; ~X; t; sÞ ¼ I ðiÞð~r; ~X; tÞ; ð57Þ
lim
s!1

T ðilÞð~r; t; sÞ ¼ T ðiÞð~r; tÞ: ð58Þ

Eqs. (57) and (58) effectively provide initial conditions for the interior solutions. This multiple scale
technique described above was used by Larsen et al. [7] to asymptotically derive the equilibrium diffusion

equation.
4.1. The N’kaoua method

Applying the approximation used in the N�kaoua method to Eqs. (9) and (10), the equations for the

interior solution are
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4�
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We have not subdivided Eq. (59) into separate transport problems, or integrated Eq. (60) over the time step,

in order to make the following analysis easier. Next, we expand the radiation intensity and material

temperature into power series of �:

I ðiÞ ¼
X
k

�kI ði;kÞ ð61Þ

and

T ðiÞ ¼
X
k

�kT ði;kÞ: ð62Þ

The temperature-dependent terms in Eqs. (59) and (60) can also be expanded into a power series in �. For
example, the material energy density can be written as

Um ¼ U ð0Þ
m þ �U ð1Þ

m þ �2U ð2Þ
m þ � � � ; ð63Þ

where

U ð0Þ
m ¼ Um

��
�¼0

¼ Um T ði;0Þ� �
; ð64Þ
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U ð1Þ
m ¼ oUm

o�

����
�¼0

¼ oUm

oT
oT
o�

����
�¼0

¼ Cv T ði;0Þ� �
T ði;1Þ ð65Þ

and

U ð2Þ
m ¼ 1

2

o2Um

o�2

����
�¼0

¼ 1

2

o2Um

oT 2

oT
o�

� �2
"

þ oUm

oT
oT 2

o�2

#�����
�¼0

¼ 1

2

o2Um

oT 2

����
T¼T ði;0Þ

T ði;1Þ� �2�
þ Cv T ði;0Þ� �

T ði;2Þ
�
: ð66Þ

We are now in a position to analyze Eqs. (59) and (60) by comparing terms that are the same order in �.
The Oð1Þ equations are

rð0Þ
n I ði;0Þ ¼ 1

4p
rð0Þ
n ac T ði;0Þ

nþ1

	 
4
ð67Þ

and

0 ¼ rð0Þ
n /ði;0Þ
�

� ac T ði;0Þ
nþ1

	 
4�
: ð68Þ

Here, we have defined the kth-order angularly integrated intensity as

/ði;kÞ ¼
Z

I ði;kÞ dX: ð69Þ

Eq. (67) yields

I ði;0Þ ¼ 1

4p
ac T ði;0Þ

nþ1

	 
4
; ð70Þ

which is consistent with Eq. (68). Thus, the leading-order interior radiation intensity is a Planckian of the

local leading-order temperature at the end of the time step. This is an implicit approximation to Eq. (11).

We also note that, to leading order, the interior radiation flux is zero

~F ði;0Þ ¼
Z

~XI ði;0Þ dX ¼ 0: ð71Þ

The Oð�Þ equations are

~X � ~rI ði;0Þ þ rð0Þ
n I ði;1Þ ¼ 1

4p
rð0Þ
n cU ð1Þ

r T ðiÞ
nþ1

	 

ð72Þ

and

0 ¼ rð0Þ
n /ði;1Þ
h

� cU ð1Þ
r T ðiÞ

nþ1

	 
i
: ð73Þ

From Eqs. (70) and (72) the Oð�Þ intensity is

I ði;1Þ ¼ � ac

4prð0Þ
n

~X � ~r T ði;0Þ
nþ1

	 
4
þ 1

4p
cU ð1Þ

r T ðiÞ
nþ1

	 

; ð74Þ

which is consistent with Eq. (73). The Oð�Þ interior radiation flux is given by
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~F ði;1Þ ¼ � ac

3rð0Þ
n

~r T ði;0Þ
nþ1

	 
4
; ð75Þ

which is equivalent to Eq. (14).

The Oð�2Þ equations are

1

c
oI ði;0Þ

ot
þ ~X � ~rI ði;1Þ þ rð0Þ

n I ði;2Þ þ rð1Þ
n I ði;1Þ ¼ 1

4p
c rð0Þ

n U ð2Þ
r T ðiÞ

nþ1

	 
h
þ rð1Þ

n U ð1Þ
r T ðiÞ

nþ1

	 
i
ð76Þ

and

o

ot
U ð0Þ

m T ðiÞ� �
¼ rð0Þ

n /ði;2Þ
h

� cU ð2Þ
r T ðiÞ

nþ1

	 
i
: ð77Þ

Using Eqs. (70) and (74), we integrate Eq. (76) over all directions, yielding

�~r � ac

3rð0Þ
n

~r T ði;0Þ
nþ1

	 
4
þ rð0Þ

n /ði;2Þ ¼ rð0Þ
n cU ð2Þ

r T ðiÞ
nþ1

	 

: ð78Þ

Then, using Eq. (78), we integrate Eq. (77) from tn to tnþ1, resulting in

Um T ði;0Þ
nþ1

	 

� Um T ði;0Þð~r; tnÞ

h i
Dtn

¼ ~r � ac

3rð0Þ
n

~r T ði;0Þ
nþ1

	 
4
: ð79Þ

This is a diffusion-like equation for the leading-order interior temperature at the end of the time step, T ði;0Þ
nþ1 .

We must now perform an initial-layer analysis to determine an initial condition for the leading-order in-

terior temperature, T ði;0Þð~r; tnÞ.
The equations for the initial layer are

�2

c
oI ðilÞ

ot
þ 1

c
oI ðilÞ

os
þ �~X � ~rI ðilÞ þ rnI ðilÞ ¼

1

4p
rnac T ðiÞ

nþ1

	 
4
ð80Þ

and

�2
o

ot
Um T ðilÞ� �

þ o

os
Um T ðilÞ� �

¼ rn

Z
I ðilÞ dX

�
� ac T ðiÞ

nþ1

	 
4�
: ð81Þ

Using a similar expansion for the initial-layer temperature and intensity as was done in Eqs. (61) and (62),

the Oð1Þ equations are

1

c
oI ðil;0Þ

os
þ rð0Þ

n I ðil;0Þ ¼ 1

4p
rð0Þ
n ac T ði;0Þ

nþ1

	 
4
ð82Þ

and

o

os
Um T ðil;0Þ� �

¼ rð0Þ
n /ðil;0Þ
�

� ac T ði;0Þ
nþ1

	 
4�
: ð83Þ

Integrating Eq. (82) over all directions and adding the results to Eq. (83), we obtain

1

c
o/ðil;0Þ

os
þ o

os
Um T ðil;0Þ� �

¼ 0: ð84Þ

Next, letting t ¼ tn, integrating from s ¼ 0 to s ¼ 1, and using Eqs. (55)–(58) and (70), Eq. (84) becomes
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a T ði;0Þ
nþ1

	 
4
� 1

c

Z
I ð0Þð~r; ~X; tnÞdXþ Um T ði;0Þð~r; tnÞ

h i
� Um T ð0Þð~r; tnÞ

h i
¼ 0; ð85Þ

where I ð0Þð~r; ~X; tnÞ and T ð0Þð~r; tnÞ are the leading-order initial conditions generated by the previous time step

for the radiation intensity and material temperature, respectively. Eq. (85) now gives an effective initial

condition for T ði;0Þð~r; tnÞ.
Using Eq. (85), Eq. (79) can be written as

Um T ði;0Þ
nþ1

	 

� Um T ð0Þð~r; tnÞ

h i
Dtn

þ 1

Dtn
a T ði;0Þ

nþ1

	 
4
� 1

Dtnc

Z
I ð0Þð~r; ~X; tnÞdX ¼ ~r � ac

3rð0Þ
n

~r T ði;0Þ
nþ1

	 
4
: ð86Þ

For all but the first time step, the leading-order initial conditions are given by the leading-order interior

solutions at the end of the previous time step:

T ð0Þð~r; tnÞ ¼ T ði;0Þ
n ; ð87Þ
I ð0Þð~r; ~X; tnÞ ¼
1

4p
ac T ði;0Þ

n

� �4
: ð88Þ

Eq. (86) then becomes, for all but the first time step,

Um T ði;0Þ
nþ1

	 

� Um T ði;0Þ

n

� �
Dtn

þ a
T ði;0Þ
nþ1

	 
4
� T ði;0Þ

n

� �4
Dtn

¼ ~r � ac

3rð0Þ
n

~r T ði;0Þ
nþ1

	 
4
: ð89Þ

Eq. (89) is a valid implicit discretization of Eq. (12), the equilibrium diffusion equation. For the first time

step, Eq. (89) will still hold if we define T ði;0Þ
n for n ¼ 0 by

Um T ði;0Þ
0

	 

þ a T ði;0Þ

0

	 
4
¼ UmðTiÞ þ

1

c

Z
Ii dX; ð90Þ

where Ti and Ii are given by Eqs. (7) and (8). Eq. (90) is identical to Eq. (15), the initial condition for the

equilibrium diffusion equation described by Pomraning [17].

In summary, an asymptotic analysis of the N�kaoua method yields, to leading order, a valid (implicit)

discretization of the equilibrium diffusion equation, Eq. (89). In addition, the leading-order radiation in-
tensity is given by a Planckian at the local end of time-step temperature, Eq. (70), and the initial condition

for the leading-order temperature, Eq. (90), is identical to the initial condition for the equilibrium diffusion

equation. Thus, the N�kaoua method has the equilibrium diffusion limit.
4.2. The Fleck–Cummings method

Next, we present the results of an asymptotic analysis of the Fleck–Cummings method. For conciseness,

the details of this analysis are given in Appendix A, although the techniques are similar to those used in the

analysis of the N�kaoua method.

The equation governing the leading-order interior radiation intensity is

1

c
o/ði;0Þ

ot
� ~r � 1

3rð0Þ
n

~r/ði;0Þ þ rð2Þ
a;n/

ði;0Þ ¼ rð2Þ
a;nac T ði;0Þ

n

� �4
: ð91Þ

Although Eq. (91) is a diffusion-like equation, it is incorrect because it does not require the intensity and

temperature to be locally in equilibrium, as in Eq. (11) (i.e. / 6¼ acT 4). Thus, the Fleck–Cummings method
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does not generate a radiation intensity that is a Planckian at the local material temperature. Also, Eq. (91)

has an effective absorption coefficient, rð2Þ
a;n, which is not a function of the opacity [see Eq. (A.7) in Appendix

A]. This effective absorption coefficient is consistent with the Fleck–Cummings approximation, in which
physical absorption and reemission are replaced by pseudo scattering and pseudo absorption in the

transport process. In addition, the source term rð2Þ
a;nacðT ði;0Þ

n Þ4 is evaluated using the temperature from the

previous time step, which may cause difficulties if large time steps are employed.

From an initial-layer analysis, there is no initial layer at the beginning of a time step, and the end of time-

step intensity and material temperature can be employed directly at the beginning of the next time step. The

equation governing the interior material temperature is then

Um T ði;0Þ
nþ1

	 

� Um T ði;0Þ

n

� �
Dtn

þ 1

c
/ði;0Þ

nþ1 � /ði;0Þ
n

Dtn
¼ 1

Dtn

Z tnþ1

tn

~r � 1

3rð0Þ
n

~r/ði;0Þð~r; tÞdt; ð92Þ

where /ði;0Þð~r; tÞ is defined by Eq. (91), and initial conditions for n ¼ 0 are given directly by Eqs. (7) and (8).

This is a statement of conservation of energy, where the left-hand side of Eq. (92) is the change in material

and radiation energy over the time step, and the right side, the spatial flow of radiation, is given by Fick�s
law. Although Eq. (92) is similar to Eq. (12), the Fleck–Cummings method does not have the equilibrium
diffusion limit since Eq. (11) is not satisfied, nor is there an initial condition similar to Eq. (15). However, it

is not clear how poorly the Fleck–Cummings method will perform in problems with diffusive character-

istics. Since Eq. (91) is a diffusion equation for the radiation intensity, it is possible that reasonably accurate

estimates of the material temperature will be generated, although the intensity and temperature may not be

locally in equilibrium. As we will see in the numerical results presented later in this paper, the Fleck–

Cummings method is capable of generating reasonable solutions, even when optically-large time steps are

used.
4.3. The Carter–Forest method

We now present the results from an asymptotic analysis of the Carter–Forest method. Again, the details

of the analysis are given in Appendix A.

The equation governing the leading-order interior intensity is

1

c
1

 
þ 1

bð0Þ
n

!
o/ði;0Þ

ot
¼ ~r � 1

3rð0Þ
n

~r/ði;0Þ: ð93Þ

Although Eq. (93) is a diffusion-like equation, it is incorrect since it does not require the radiation in-

tensity and material temperature to be in local equilibrium, as in Eq. (11). Eq. (93) represents a diffusion

process with no absorption and a decreased photon speed. This is consistent with the Carter–Forest ap-

proximation, in which the absorption-reemission process has been replaced by photons exiting scattering

events at a delayed time, effectively slowing the transport process.

From an initial layer analysis, the initial condition for the leading-order interior intensity is

/ði;0Þð~r; tnÞ ¼
bð0Þ
n

1þ bð0Þ
n

/ð0Þð~r; tnÞ þ
1

1þ bð0Þ
n

ac T ð0Þð~r; tnÞ
h i4

; ð94Þ

where /ð0Þð~r; tnÞ and T ð0Þð~r; tnÞ are the end of time-step values for the intensity and temperature from the

previous time step, respectively. Eq. (94) has the interpretation of being a weighted average of the leading-

order temperature and radiation intensity from the previous time step. Also, the initial condition for the
leading-order temperature is



J.D. Densmore, E.W. Larsen / Journal of Computational Physics 199 (2004) 175–204 189
Um T ði;0Þð~r; tnÞ
h i

¼ Um T ð0Þð~r; tnÞ
h i

þ 1

c
/ð0Þð~r; tnÞ
h

� /ði;0Þð~r; tnÞ
i
: ð95Þ

These equations are not valid versions of Eq. (15).

The equation for the leading-order interior material temperature is

Um T ði;0Þ
nþ1

	 

� Um T ði;0Þ

n

� �
Dtn

þ 1

c
/ði;0Þ

nþ1 � /ði;0Þ
n

Dtn
¼ 1

Dtn

Z tnþ1

tn

~r � 1

3rð0Þ
n

~r/ði;0Þ dt: ð96Þ

Eq. (96) is similar to the equilibrium diffusion equation, Eq. (12). It is a statement of conservation of

energy, with the change in material and radiation energy balanced by the spatial flow of radiation energy

(which is given by Fick�s Law). However, in general, the Carter–Forest method does not have the equi-

librium diffusion limit since the radiation intensity is given by Eqs. (93) and (94), not Eq. (11), nor is there

an initial condition similar to Eq. (15).

However, there is a subset of problems in which the Carter–Forest method nearly yields the equilibrium

diffusion limit. If the material temperature does not change by much over a time step, then Eqs. (93)–(96)

can be shown to reduce to discrete versions of Eqs. (11), (12) and (15). The details of this analysis are given
in Appendix A. Thus, if the time grid is small enough such that the time rate of change of the temperature is

resolved, and the initial intensity and temperature are nearly in equilibrium, then the Carter–Forest method

will generate accurate, physically-correct solutions. We note that this favorable result does not hold for the

Fleck–Cummings method.
5. Numerical results

We now present the results from several numerical simulations. In these problems, we use a temperature-

independent opacity of r ¼ 100 cm�1 and a temperature-independent heat capacity of Cv ¼ 0:01 GJ/cm3-

keV (1 GJ¼ 1 gigajoule¼ 109 J). In our problems temperature is measured in keV, and time is measured in

ns (1 ns¼ 1 nanosecond¼ 10�9 s). In these units, the speed of light c is 29.98 cm/ns, and the radiation

constant a is 0.01372 GJ/cm3-keV4. The mean-free time of a photon, using these physical constants and

material properties, is 3.34� 10�4 ns. We have chosen the opacity and heat capacity above to be consistent

with the scaling in Eqs. (9) and (10), and so that the time steps employed in the following problems are

many mean-free times long.
We first examine the results of an infinite medium problem in which the material temperature and ra-

diation intensity are initially out of equilibrium. This problem serves to test how well the results of the

asymptotic analysis of each method satisfy the initial condition, Eq. (15). Since this problem has no space

dependence, no Monte Carlo simulation is required, and the underlying equations in each Monte Carlo

method are solved exactly. We employ an implicitness factor of a ¼ 1 in the Fleck–Cummings calculations,

and a time-step size of Dt ¼ 0:01 ns, which is much larger than the mean-free time of a photon. Since our

calculations do not resolve the initial layer, the best one can hope for is that the Monte Carlo method will

generate the equilibrium solution at the end of a single time step. This will happen if an initial condition
similar to Eq. (15) is generated in the asymptotic analysis of the Monte Carlo method. Our theoretical

results predict that the N’kaoua method has this initial condition, that the Carter–Forest method has this

initial condition when the material temperature and radiation intensity are not too far out of equilibrium

initially, and that the Fleck–Cummings method never has this initial condition.

The material temperatures calculated by the three Monte Carlo methods are plotted in Figs. 1–3. In

these problems, the material temperature is initially set to 0.4 keV, and the radiation intensity is given by a

Planckian initially at temperatures TR ¼ 0:5, 0.7, and 1.0 keV. In all three problems, the N�kaoua method



0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0.4

0.405

0.41

0.415

0.42

0.425

0.43

0.435

0.44

0.445

0.45

Time (ns)

T
em

pe
ra

tu
re

 (
ke

V
)

Fleck–Cummings
Carter–Forest
N’kaoua

Fig. 1. Infinite medium material temperature, TR ¼ 0:5 keV.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Time (ns)

T
em

pe
ra

tu
re

 (
ke

V
)

Fleck–Cummings
Carter–Forest
N’kaoua

Fig. 2. Infinite medium material temperature, TR ¼ 0:7 keV.
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immediately calculates the correct equilibrium solution after a single time step, regardless how far apart the

material and radiation temperatures are initially. In Fig. 1, the Carter–Forest method nearly calculates the

correct equilibrium solution after a single time step, and certainly yields the correct solution in the following



0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (ns)

T
em

pe
ra

tu
re

 (
ke

V
)

Fleck–Cummings
Carter–Forest
N’kaoua

Fig. 3. Infinite medium material temperature, TR ¼ 1:0 keV.
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time step. The Fleck–Cummings method oscillates unphysically, until the correct solution is calculated only

at the end of several time steps. This behavior was also observed by Martin and Brown [15]. As the initial

radiation temperature and material temperature increasingly differ, the Carter–Forest results become less

accurate, requiring several time steps to calculate the correct equilibrium solution. We see in Fig. 3 that

both the Fleck–Cummings and Carter–Forest methods overshoot the equilibrium solution, calculating the
correct answer only after several time steps. This confirms our theoretical predictions that the N�kaoua
method has the equilibrium diffusion limit, the Carter–Forest method has the equilibrium diffusion limit if

the problem is initially near equilibrium, and the Fleck–Cummings method never has the equilibrium

diffusion limit.

We now consider a more complex, space-dependent problem, consisting of a 0.25 cm one-dimensional

slab initially at equilibrium at 1 keV. Since this problem is at equilibrium, there is no initial layer. However,

this problem will serve to test the accuracy of each method�s asymptotically generated diffusion equation.

The problem has a reflective boundary condition on the left boundary and an incident Planckian source at
0.1 keV on the right boundary. Physically, at t ¼ 0, the temperature of the slab begins to decrease as energy

flows from the interior of the slab to the cooler outer boundary. Although a temperature gradient exists

between the reflective left boundary and the exterior right boundary, the material and radiation should

remain locally at equilibrium as the material cools.

We have simulated this problem using all three Monte Carlo methods, employing a 0.005 cm spatial grid,

and implicit capture along the particle track length [10,12,19]. In our simulations, the spatial grid is op-

tically thin (0.5 mean-free paths). Thus, the effects of spatial discretization should be negligible, as we

assumed in our asymptotic analysis. In calculations using the Fleck–Cummings method, we again set the
implicitness factor to a ¼ 1. We also use two separate time discretizations: a Dt ¼ 0:01 ns fine grid, and a

Dt ¼ 0:1 ns coarse grid. We provide the fine-grid results as a reference for the less-accurate coarse-grid

calculations, and not as a study in truncation error. Although the fine grid time-step size is much larger

than the mean-free time of a photon in this problem, it was nonetheless sufficient to produce an accurate
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solution. The fact that the Monte Carlo methods generated accurate solutions even though an optically

small time step was not used points to the robustness of these methods. The coarse grid will serve as a test

case for our asymptotic analysis results, since these time steps are definitely not optically small.
In Figs. 4–7, we plot the results of our simulations in the leftmost spatial cell (x ¼ Dx=2 ¼ 0:0025 cm) as

a function of time. In Fig. 4, we have plotted the coarse Dt and fine Dt temperatures as a function of time for

all of the three Monte Carlo methods considered. In Figs. 5–7, we have plotted aT 4 and the radiation

energy density

E ¼ 1

c

Z
I dX ð97Þ

for the coarse time grid for each Monte Carlo method. In the equilibrium diffusion limit, E should be

identical to aT 4. In Figs. 5–7 we also plot aT 4 for the fine time grid (solid line) as a reference.

From Fig. 4 (material temperature at x ¼ 0:0025 cm for 06 t6 1 ns), we see that all three methods yield

qualitatively accurate material temperatures, even when extremely large time steps are used. However,

Fig. 4 shows that for the coarse time grid, the Carter–Forest solution is nearly exact for the coarse time
grid, the errors in the Fleck–Cummings and N�kaoua temperatures are about 3% and 5%, respectively, at

t ¼ 1 ns. The relative accuracy of the Carter–Forest solution can be explained as follows.

Conceptually, the errors generated by the Fleck–Cummings, Carter–Forest, and N�kaoua methods are of

two types: a linearization error, which occurs when the nonlinear problem is approximated by a linear

problem during the time step, and a truncation error, which occurs when the linear problem is time-dis-

cretized (the time-dependent emission source is approximated). The Fleck–Cummings method contains

both types of errors. The Carter–Forest method has the same linearization errors as the Fleck–Cummings,

but because Carter–Forest solves the resulting linear equations exactly, it has no temporal truncation error.
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Fig. 5. Fleck–Cummings radiation energy density at x ¼ 0:0025 cm.
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Fig. 6. Carter–Forest radiation energy density at x ¼ 0:0025 cm.
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The N�kaoua method is fundamentally different from the Fleck–Cummings and Carter–Forest methods; it

is almost free of the linearization errors (it holds the opacity constant over a time step, as the other Monte

Carlo methods do), but has a temporal truncation error (it approximates the emission source implicitly).
The situation is summarized in Table 1.
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Fig. 7. N�kaoua radiation energy density at x ¼ 0:0025 cm.

Table 1

Truncation and linearization errors

Monte Carlo method Linearization error Temporal truncation error

Fleck–Cummings Yes Yes

Carter–Forest Yes No

N�kaoua Noa Yes

a Except for using a constant opacity over the time step.
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It is now possible to explain why the Carter–Forest method is more accurate than the other methods in

Fig. 4. First, the Carter–Forest and Fleck–Cummings methods have the same linearization errors, but the

Fleck–Cummings method has an additional temporal truncation error. Therefore, the Carter–Forest
method should generally be more accurate than the Fleck–Cummings method – and for this problem, it is.

Also, for problems in which the temporal truncation error dominates the linearization error, Table 1 shows

that the Carter–Forest method should be more accurate than the N�kaoua method. (Conversely, for

problems in which the linearization error dominates the temporal truncation error, the N�kaoua method

should be more accurate.) The fact that the Carter–Forest method is more accurate in Fig. 4 indicates that

the underlying problem has larger truncation than linearization errors.

We now examine the radiation energy density calculated by each Monte Carlo method. Figs. 5–7 (aT 4

and E at x ¼ 0:0025 cm for 06 t6 1 ns) show that – as predicted – the Fleck–Cummings solution is not in
equilibrium (E 6¼ aT 4), the Carter–Forest solution is nearly in equilibrium (E � aT 4), and the N�kaoua
solution is in equilibrium (E ¼ aT 4). Again, the Carter–Forest solution is the most accurate, with errors in

the Fleck–Cummings and N�kaoua values of E at about 6% and 16%, respectively, at t ¼ 0:1 sh. We also

see, from Fig. 5, that the unphysical behavior of the Fleck–Cummings method is temporary, and eventually

the Fleck–Cummings solution reaches equilibrium.
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Thus, for this spatially-dependent problem, the N�kaoua method has the equilibrium diffusion limit, and

the Carter–Forest also has the equilibrium diffusion limit, since the material temperature does not change

by much over a time step. The Fleck–Cummings method does not have the equilibrium diffusion limit, and
unphysically produces a radiation energy density that is not in equilibrium with the material temperature.

Nevertheless, even when optically large time steps are employed, all three Monte Carlo methods calculated

fairly accurate material temperatures.
6. Conclusions

We have performed an asymptotic analysis for three Monte Carlo methods for grey radiative transfer,
similar to the asymptotic analysis performed on deterministic transport methods. In this asymptotic limit,

the mean-free path and mean-free time of a photon become small, the time discretization is fixed, and the

timesteps become optically large. This analysis is of interest because in many problems it is computationally

impractical to employ optically small time steps.

Our asymptotic analysis shows that (i) the N�kaoua method has the equilibrium diffusion limit,

(ii) the Carter–Forest method has the equilibrium diffusion limit if the material temperature change

during a time step is small, and (iii) the Fleck–Cummings method does not have the equilibrium

diffusion limit. Thus, if a time discretization is chosen that is optically large, but nonetheless re-
solves the material temperature change, both the N�kaoua and Carter–Forest methods will produce

accurate results, while the Fleck–Cummings method may calculate unphysical material temperatures

and radiation intensities.

With a set of numerical results, we have demonstrated the applicability of our theoretical analysis. In an

infinite medium problem with an unresolved initial layer, the N�kaoua method always produced accurate

results, the Carter–Forest method produced accurate results if the radiation and material were not too far

away from equilibrium initially, and the Fleck–Cummings method produced unphysical results. In a

spatially-dependent problem initially in equilibrium, the N�kaoua and Carter–Forest methods retained
temperature and radiation equilibrium, while the Fleck–Cummings method yielded a radiation intensity

that was not in equilibrium with the material temperature. Nonetheless, all methods produced fairly ac-

curate estimates of the material temperature.

Of the three Monte Carlo methods examined, the Fleck-Cummings method produced the most un-

physical results in our numerical simulations. However, extremely large time steps were required for the

Fleck–Cummings method to perform poorly. The Fleck–Cummings method gave accurate results if

smaller, but still optically large, time steps were employed. Thus, the Fleck–Cummings method will not

generate unphysical solutions for all problems with diffusive characteristics. This observation is consistent
with our theoretical results, in which the asymptotic analysis of the Fleck–Cummings equations generated a

diffusion equation, but did not require the radiation intensity and material temperature to be in local

equilibrium. Also, from our numerical simulations, we have noted that the unphysical behavior of

the Fleck–Cummings method is apparently temporary, and correct equilibrium solutions are eventually

generated.

The theoretical and numerical results presented in this paper are consistent with conventional wisdom

regarding the Fleck–Cummings method. This method, which has been used for many years to simulate

thermal radiation transport, has known deficiencies when used with large time steps. For example, Fleck–
Cummings simulations with large time steps can violate the maximum principle [14], which places bounds

on the material temperature and radiation energy density. In practical problems, these inaccuracies are

usually observed to be temporary; after a few time steps, they damp out and the numerical solution be-

haves in a more quantitatively correct manner. The analysis in this paper shows that in the asymptotic
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equilibrium diffusion limit, the Fleck–Cummings method limits to a time-discretized equation that

resembles – but is not – a time-discretized equilibrium diffusion equation. Among other things, this

asymptotic Fleck–Cummings equation incorrectly does not force the radiation intensity and material
temperature to be in local equilibrium. Our numerical results in fact show that lack of equilibrium in the

Fleck–Cummings solution persists for several time steps. However, like the violations of the maximum

principle, this unphysical error damps away after several time steps.

Overall, when a system is ‘‘hit’’ with a burst of radiation that rapidly drives it out of equilibrium, the

Fleck–Cummings method can behave unphysically (violation of the maximum principle, unphysical os-

cillations, lack of equilibrium between radiation intensity and material temperature) for a few time steps;

and then, afterward, settle into a more physically correct behavior. During these ‘‘transient’’ times, the

Fleck–Cummings method is not guaranteed to generate accurate or physically correct solutions. If accurate
solutions are required for all time steps and spatial points, then Fleck–Cummings solutions should receive

very careful scrutiny in these ‘‘transient’’ parts of phase space.

The analysis and the numerical results in this paper demonstrate that for stressful diffusive problems,

the Carter–Forest method is slightly more robust than the Fleck–Cummings method. However, in

problems that are not near equilibrium, the Carter–Forest method can experience the same deficiencies

as the Fleck–Cummings method. Also, the Carter–Forest method employs a Monte Carlo representa-

tion of the absorption-emission physics that is physically correct (if nonlinearities are ignored), in

contrast to the Fleck–Cummings method, with its pseudo-scattering and pseudo-absorption. Thus, if the
problem parameters are such that truncation errors are more important than linearization errors, the

Carter–Forest method is capable of producing more accurate solutions than the Fleck–Cummings

method.

We wish to emphasize that our analysis and results do not show that the Fleck–Cummings method is

fatally flawed. However, this method does have weaknesses, some of them subtle. The aim of this paper is to

analyze the strengths and weaknesses of the Fleck–Cummings, Carter–Forest, and N�kaoua methods in

stressful, diffusive problems, so that these methods can be employed to solve practical problems with a

better understanding of the errors that will inevitably occur.
In the analysis presented in this paper, we have examined only spatially continuous versions of each

Monte Carlo method. In practical implementations, these methods employ a spatial discretization in

which the material temperature (and temperature-dependent material properties) are calculated as cell-

averaged quantities. In practical problems, the spatial cells cannot always be chosen to be optically thin.

Thus, a complete asymptotic analysis would include the effects of spatial discretization. Also, the Carter–

Forest and Fleck–Cummings methods may have an advantage over the N�kaoua method in problems

with optically thick cells. Since the Fleck–Cummings and Carter–Forest methods employ effective scat-

tering to model the absorption-reemission process, these cells will appear thick and highly scattering.
Although inefficient (particles will experience many collisions during their lifetime), Monte Carlo simu-

lation can treat cells of this type fairly accurately. However, the N�kaoua method does not employ ef-

fective scattering, which causes these cell to appear thick and highly absorbing [12]. This is a situation for

which Monte Carlo simulation is not well suited. If analog tracking is employed, very few particles may

be able to pass through the cell. If nonanalog simulation is used, the statistical noise of the calculation

may be extremely high. Thus, if spatial discretization is considered, it is not clear that the N�kaoua
method will outperform the Fleck–Cummings and Carter–Forest methods in problems near the equi-

librium diffusion limit.
In addition to subdividing the problem into spatial cells, a piecewise-linear spatial representation of the

emission source in each cell is often used in realistic problems [20]. This linear source may be important in

the asymptotic analysis of spatially discretized problems. We have also specifically ignored boundary layers

and initial-boundary layers, which may be important in some problems, and frequency-dependent prob-

lems. These issues remain for future work.
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Appendix A. Asymptotic analysis of the Fleck–Cummings and Carter–Forest methods

We now present detailed asymptotic analyses of both the Fleck–Cummings and Carter–Forest methods.
These analyses yield the results presented in Section 4.
A.1. The Fleck–Cummings method

Applying the Fleck–Cummings approximation described previously to Eqs. (9) and (10), we obtain the

interior equations

�2

c
oI ðiÞ

ot
þ �~X � ~rI ðiÞ þ rnI ðiÞ ¼

1

4p
rs;n

Z
I ðiÞ dXþ 1

4p
ra;nac T ðiÞ

n

� �4 ðA:1Þ

and

�2
o

ot
Um T ðiÞ� �

¼ ra;n

Z
I ðiÞ dX

�
� ac T ðiÞ

n

� �4�
: ðA:2Þ

In Eqs. (A.1) and (A.2), we have defined the pseudo-scattering opacity as

rs;n ¼ rn
abncrnDtn

�2 þ abncrnDtn
ðA:3Þ

and the pseudo-absorption opacity as

ra;n ¼ rn
�2

�2 þ abncrnDtn
: ðA:4Þ

We note that T ðiÞ
n in Eqs. (A.1) and (A.2) is the material temperature evaluated at the end of the previous

time step. To simplify the following analysis, we have not integrated Eq. (A.2) over the time step. We can

now perform an asymptotic analysis by comparing terms of the same order in �. In this case, the pseudo-
scattering opacity can be expanded as

rs;n ¼ rð0Þ
n þ �rð1Þ

n þ �2rð2Þ
s;n þ � � � ðA:5Þ

and the pseudo-absorption opacity as

ra;n ¼ �2rð2Þ
a;n þ � � � ; ðA:6Þ

where

rð2Þ
a;n ¼

1

abð0Þ
n cDtn

; ðA:7Þ
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and

rð2Þ
s;n ¼ rð2Þ

n � rð2Þ
a;n: ðA:8Þ

The Oð1Þ equation is

rð0Þ
n I ði;0Þ ¼ rð0Þ

n

1

4p

Z
I ði;0Þ dX; ðA:9Þ

which can be written as

I ði;0Þ ¼ 1

4p
/ði;0Þ: ðA:10Þ

Here /ði;0Þ, the leading-order angularly-integrated intensity, is unspecified. Also, since the leading-order

intensity is isotropic, the leading-order flux vanishes (~F ði;0Þ ¼ 0).
Next, the Oð�Þ equation is given by

~X � ~rI ði;0Þ þ rð0Þ
n I ði;1Þ ¼ 1

4p
rð0Þ
n /ði;1Þ: ðA:11Þ

Using Eq. (A.10), Eq. (A.11) becomes

I ði;1Þ ¼ � 1

4prð0Þ
n

~X � ~r/ði;0Þ þ 1

4p
/ði;1Þ; ðA:12Þ

where /ði;1Þ is unspecified. Also, from Eq. (A.12), the Oð�Þ radiation flux is

~F ði;1Þ ¼ � 1

3rð0Þ
n

~r/ði;0Þ; ðA:13Þ

which is a statement of Fick�s law.
The Oð�2Þ equations are

1
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Integrating Eq. (A.14) over all directions, and using Eqs. (A.10) and (A.12), we obtain

1

c
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Eq. (A.16) is the diffusion equation for the leading-order interior intensity, Eq. (91).

Integrating Eq. (A.15) over the time step, and using Eq. (A.16), we obtain
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n n
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Here, T ði;0Þ
nþ1 and /ði;0Þ

nþ1 represent the leading-order material temperature and angularly-integrated radiation

intensity at the end of the time step, respectively. We must now perform an initial-layer analysis to develop

initial conditions for T ði;0Þð~r; tnÞ and /ði;0Þð~r; tnÞ.
The equations for the initial layer are
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The Oð1Þ equations are given by
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Integrating Eq. (A.20) over all directions, we have
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and, to leading order, there is no initial layer for the material temperature or radiation intensity. The initial

conditions for T ði;0Þð~r; tnÞ and /ði;0Þð~r; tnÞ are then given directly by the interior solutions at the end of the

previous time step.

Using the results from the initial-layer analysis, Eq. (A.17) now becomes
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This is the equation for the leading-order material temperature, Eq. (92).

A.2. The Carter–Forest method

Applying the Carter–Forest approximation to Eqs. (9) and (10), we obtain the interior equations
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To simplify the following analysis, we do not solve Eq. (A.25) and substitute into Eq. (A.24), nor do we

integrate Eq. (A.26) over the time step. Also, we treat U ðiÞ
r as an unknown, and not as an explicit function of

temperature.
We now proceed with an asymptotic analysis of the interior equations. The Oð1Þ equations are
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Eq. (A.27) can be written as

I ði;0Þ ¼ 1

4p
cU ði;0Þ

r ; ðA:30Þ

which is consistent with Eqs. (A.28) and (A.29). Again, using Eq. (13), the leading-order interior radiation

flux vanishes.

Next, the Oð�Þ equations are
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Using Eq. (A.30), Eq. (A.31) becomes
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which is consistent with Eqs. (A.32) and (A.33). The corresponding Oð�Þ interior radiation flux is
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3rð0Þ
n

~r/ði;0Þ; ðA:35Þ

which, as in the Fleck–Cummings method, is Fick�s law.
The Oð�2Þ equations are
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Integrating Eq. (A.36) over all directions, and using Eqs. (A.30), (A.34) and (A.37), we obtain
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Eq. (A.39) is the diffusion equation for the leading-order interior radiation intensity, Eq. (93).

Next, integrating Eq. (A.38) over the time step, and using Eqs. (A.30), (A.37) and (A.39), yields
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As with the Fleck–Cummings analysis, T ði;0Þ
nþ1 and /ði;0Þ

nþ1 are the leading-order material temperature and

angularly-integrated radiation intensity at the end of the time step. We now perform an initial-layer analysis

to develop expressions for T ði;0Þð~r; tnÞ and /ði;0Þð~r; tnÞ.
The equations for the initial layer are
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The Oð1Þ equations are
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Integrating Eq. (A.44) over all directions, and combining the results with Eqs. (A.45) and (A.46), we

obtain
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Next, using Eqs. (55)–(58), the initial condition for U ðil;0Þ
r ,
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and the matching condition for U ðil;0Þ
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we set t ¼ tn and integrate Eq. (A.47) from s ¼ 0 to s ¼ 1. We then have
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where T ð0Þð~r; tnÞ and /ð0Þð~r; tnÞ are the leading order temperature and angularly-integrated radiation in-

tensity at the end of the previous time step. Using Eq. (A.30), the initial condition for the leading-order

radiation intensity is given by

/ði;0Þð~r; tnÞ ¼
bð0Þ
n

1þ bð0Þ
n

/ð0Þð~r; tnÞ þ
1

1þ bð0Þ
n

ac T ð0Þð~r; tnÞ
h i4

: ðA:51Þ

Also, from Eq. (A.50), the initial condition for the leading-order temperature is

Um T ði;0Þð~r; tnÞ
h i

¼ Um T ð0Þð~r; tnÞ
h i

þ 1

c
/ð0Þð~r; tnÞ
h

� /ði;0Þð~r; tnÞ
i
: ðA:52Þ

These are the initial conditions given in the main text, Eqs. (94) and (95).

Using Eq. (A.52), Eq. (A.40) becomes

Um T ði;0Þ
nþ1

	 

� Um T ði;0Þ

n

� �
Dtn

þ 1

c
/ði;0Þ

nþ1 � /ði;0Þ
n

Dtn
¼ 1

Dtn

Z tnþ1

tn

~r � 1

3rð0Þ
n

~r/ði;0Þ dt; ðA:53Þ

where we have used that the leading-order solutions at the end of the previous times step are the corre-

sponding interior solutions [i.e. T ð0Þð~r; tnÞ ¼ T ði;0Þ
n ð~rÞ and /ð0Þð~r; tnÞ ¼ /ði;0Þ

n ð~rÞ]. Eq. (A.53) is the equation for

the leading-order interior material temperature, Eq. (96).

We now discuss a case in which the Carter–Forest method nearly yields the equilibrium diffusion limit.

Integrating Eq. (A.39) over the time step, and combining the results with Eq. (A.53), we have

Um T ði;0Þ
nþ1

	 

� Um T ði;0Þ

n

� �
þ 1

c
/ði;0Þ

nþ1

	
� /ði;0Þ

n



¼ 1

c
1

 
þ 1

bð0Þ
n

!
/ði;0Þ

nþ1

	
� /ði;0Þð~r; tnÞ



: ðA:54Þ

Then, using Eq. (A.51), Eq. (A.54) can be simplified as

bð0Þ
n Um T ði;0Þ

nþ1

	 
h
� Um T ði;0Þ

n

� �i
¼ /ði;0Þ

nþ1

c
� a T ði;0Þ

n

� �4
: ðA:55Þ

Using Eq. (21), and assuming that the material temperature changes by a small amount over the time

step, the left-hand side of Eq. (A.55) becomes

4a T ði;0Þ
n

� �3
Cv T ði;0Þ

n

	 
 Um T ði;0Þ
nþ1

	 
h
� Um T ði;0Þ

n

� �i
� 4a T ði;0Þ

n

� �3
T ði;0Þ
nþ1

	
� T ði;0Þ

n



� a T ði;0Þ

nþ1

	 
4
� a T ði;0Þ

n

� �4
: ðA:56Þ
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From Eqs. (A.55) and (A.56), the leading-order radiation intensity at the end of the time step is

/ði;0Þ
nþ1 ¼ ac T ði;0Þ

nþ1

	 
4
; ðA:57Þ

which is an approximation to Eq. (11). Then, for all but the first time step, Eq. (A.53) can be approximated

as

Um T ði;0Þ
nþ1

	 

� Um T ði;0Þ

n

� �
Dtn

þ a
T ði;0Þ
nþ1

	 
4
� T ði;0Þ

n

� �4
Dtn

¼ 1

Dtn

Z tnþ1

tn

~r � 1

3rð0Þ
n

~r/ði;0Þ dt: ðA:58Þ

Eq. (A.58) is discretized version of Eq. (12). From Eq. (A.30), if the problem is at equilibrium at the end

of the previous time step, then the initial layer for the radiation intensity vanishes. Then, the right hand side

of Eq. (A.58) is the average radiation flux as the radiation intensity moves from /ði;0Þ
n ¼ ac T ði;0Þ

n

� �4
to

/ði;0Þ
nþ1 ¼ ac T ði;0Þ

nþ1

	 
4
.

For the first time step, we define an effective temperature T ði;0Þ
0 such that Eq. (A.51) becomes

ac T ði;0Þ
0

	 
4
¼ bðTiÞ

1þ bðTiÞ
/i þ

1

1þ bðTiÞ
acT 4

i ; ðA:59Þ

where /i and Ti are given by Eqs. (7) and (8), respectively. Using Eq. (21), Eq. (A.59) can be written as

ac T ði;0Þ
0

	 
4
þ CvðTiÞ

4aT 3
i

ac T ði;0Þ
0

	 
4�
� acT 4

i

�
¼ /i: ðA:60Þ

Then, if the difference between T ði;0Þ
0 and Ti is small, we can use Eq. (A.56) to rewrite Eq. (A.60) as

Um T ði;0Þ
0

	 

þ a T ði;0Þ

0

	 
4
¼ UmðTiÞ þ

1

c
/i: ðA:61Þ

Eq. (A.61) is identical to Eq. (15), the initial condition for the equilibrium diffusion equation. In ad-

dition, using Eqs. (A.53) and (A.57), we note that Eq. (A.58) will hold if T ði;0Þ
n for n ¼ 0 is defined by Eq.

(A.61).
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